An Enhanced Design Methodology for Resonant Clock Trees

نویسندگان

  • Somayyeh Rahimian Omam
  • Vasilis F. Pavlidis
  • Xifan Tang
  • Giovanni De Micheli
چکیده

Clock distribution networks consume a considerable portion of the power dissipated by synchronous circuits. In conventional clock distribution networks, clock buffers are inserted to retain signal integrity along the long interconnects, which, in turn, significantly increase the power consumed by the clock distribution network. Resonant clock distribution networks are considered as efficient low-power alternatives to traditional clock distribution schemes. These networks utilize additional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. A design method for applying the resonant clocking approach for synthesized clock trees is presented. The proper number and placement of LC tanks and the related resonance parameters are determined in the proposed method. This method attempts to minimize the number of LC tanks that can deliver a full swing signal to all the sink nodes by considering the capacitive load at each node to determine the location of LC tanks. Resonance parameters, such as the size of the inductor can be adapted to reduce the power consumption and/or area overhead of the clock distribution network. Simulation results indicate up to 57% reduction in the power consumed by the resonant clock network as compared to a conventional buffered clock network. Compared to existing methods, the number of LC tanks for the proposed technique is decreased up to 15% and the signal swing is also improved by 44%. Depending on whether power or area is the design objective, two different approaches are followed to determine the parameters of resonance. If the design objective is to lower the power consumed by the network, the power and area of the designed network improve up to 24%

منابع مشابه

Signaling in 3-D integrated circuits, benefits and challenges

Three-dimensional (3-D) or vertical integration is a design and packaging paradigm that can mitigate many of the increasing challenges related to the design of modern integrated systems. 3-D circuits have recently been at the spotlight, since these circuits provide a potent approach to enhance the performance and integrate diverse functions within a multi-plane stack. Clock networks consume a g...

متن کامل

Dual-VDD, Single-Frequency Clocking Methodology for System on Chip

Clock distribution networks synchronize the flow of data signals among synchronous data paths. The design of these networks can dramatically affect system-wide performance and reliability. A theoretical background of clock skew is provided in order to better understand how clock distribution networks interact with data paths. Minimum and maximum timing constraints are developed from the relativ...

متن کامل

Energy Recovering ASIC Design

Dissipation in the clock tree and state elements of ASIC designs is often a significant fraction of total energy consumption. We propose a methodology for recovering most of this energy by using a novel energy recovering flip-flop and a novel single-phase resonant clock generator. As our state element has near-zero energy consumption when the input data is not switching, it provides the savings...

متن کامل

Linköping Studies in Science and Technology

Today’s microprocessors with millions of transistors perform high-complexity computing at multi-gigahertz clock frequencies. The ever-increasing chip size and speed call for new methodologies in clock distribution network. Conventional global synchronization techniques exhibit many drawbacks in the advanced VLSI chips such as high-speed microprocessors. A significant percentage of the total pow...

متن کامل

Design of Resonant Clock Distribution Networks for 3-D Integrated Circuits

Designing a low power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce the power consumption while delivering a full swing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • J. Low Power Electronics

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013